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LAUNCHER DYNAMICS STUDY
Part R

Approximate Formulas for Pitch Velocity at Tip-off

ABSTRACT:

The preliminary design or feasibility study of a straight rail launching
system requires, in addition to layouts and material composition, estimates of
the accuracy of the system. Possible sources of inaccuracy, which is defined to
be nonreproducable tip-off velocity, are thrust misalignment, rail curvature
arising from manufacturing processes or uneven heating due to the sun, shaking
forces of unknown phase which might exist in SOSR designs, or excessive amounts
of friction between shoes and rail.

Our purpose in this report is to present techniques of analysis for a
straight rail system with a view toward obtaining estimates of changes in pitch
velocity of the rocket at tip-off as might exist because of the presence of these

various disturbing agencies.
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LIST OF SYMBOLS

coordinates attached to launcher

coordinates of mass center of missile

angular rotation of launcher from static position
angle of elevation in absence of dead weight
angular rotation due to dead weight

helical spring constant

linear dimensions of launcher and missile
weight of launcher

weight of missile

function specifying curvature of the rail
additional angle of inclination of missile due to rail curvature
thrust

thrust misalignment parameters

mass unbalance parameters

angular frequency of shaking force

coefficient of friction

shoe loads

moment of inertia of launcher about pivot

moment of inertia of missile about mass center

Additional symbols are defined in the body of the text.



1. INTRODUCTION

The preliminary design or feasibility study of a straight rail launching

system requires, in addition to layouts and material composition, estimates of

its accuracy. Possible sources of inaccuracy, which is defined to be nonreproducabfe

tip-off pitch velocity, are thrust misalignment, rail curvature arising from
manufacturing processes or uneven heating due to the sun, shaking forces which
might exist in SOSR designs, or excessive amounts of friction between shoes and
rail,

Our purpose in this report is to present techniques of analysis for a
straight rail system with a view toward obtaining estimates of changes in pitch
velocity of the missile at tip-off as might exist because of the presence of these
various disturbing agencies. Since these results are to be used for feasibility
studies or the like, methods will be developed so that these quantities can be
obtained by means of slide rule or desk machine calculations rather than by
means of analogue or digital computing devices. For the detailed analyses
attendent to final design proposals, numerical investigations of the type carried
out in many of the previous technical reports of this project are necessary.

All of these methods are associated with a launcher whose gross con-
figuration can be accurately represented by the two degree of freedom model
which appeared in TAM Report No. 552, University of Illinois, Urbana, Illinois,
1960. As shown in Fig. 1, this model consists of a rigid L-frame supported
at a single point O . Since this is a pivot point, horizontal and vertical motion
is prevented and so only rotation is possible. Stability is.provided by some
equivalent helical spring which represents the overall flexibility of the structure.

The launching rail AB may have some small curvature as indicated.



FIGURE 1

The missile is represented by two masses rigidly attached to two sleeves
that slide along the arm of the launching frame., These masses are the source
of rotational inertia for the missile. (We only consider systems in which the
shoes of the rocket leave the rail simultaneously.) Finally the thrust force is
denoted by T (t).

This dynamical system has two degrees of freedom. The coordinates
used to describe its configuration at time t are the angular rotation 6 (t) of
its arm as measured from equilibrium and gm (1) , the distance the mass center
of the missile has moved up the rail. As in all previous work, it is again assumed
that the angle © is small so that the usual approximations based on linearization

are permissible,



3.
The differential equations which describe the motion of this system are

very complex. We may; however, in certain instances, bypass complete integra-
tion of the equations of motion of any system. Our efforts here are based on the
reduction of the differential equations of motion to integral equations and a sub-
sequent solution by iteration. The necessary number of steps in the iteration
dependson the numerical values of a parameter which is the ratio launch time
versus natural period of the system. In some instances we can employ the

principle of impulse and momentum to interpret these approximations,

‘Equations of Motion for the Model

We begin with a discussion of the kinematics of the model shown schemati-
cally in Fig. 2. The missile is represented by the bent ABCD and the launcher
by the rigid frame ORS . Three coonrdinate systems are introduced. The first
of these labelled XY in the figure is fixed to ground, OX being in the tangent
plane to the earth in the direction of aim. A second system denoted by xy is
also fixed and in the XY-plane; however, the x-axis of this set of coordinates
makes an angle y + est with X . This total angle is the angle of elevation when
the structure is loaded with its dead weight. Finally the £n-system is attached
to the launcher and rotates with it. This angle of rotation which will be called 6
represents the deviation of the launcher from its equilibrium position due to its

weight,

The rail RS, has a slight curvature. Its equation in the §n-system will
be taken in the form

Mratl =M * € €@
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where € is small and of the order of magnitude of the angle 6 , If (§m. T )
are the coordinates of the mass center of the rocket in the £n-system, the angle

of rotation § of the missile relative to this set of coordinates is given by

£(E +D) - £(E,, - 9
€ C

To obtain the equations of motion for the system we first consider the
free body diagram of the missile shown in Fig. (3). These equations will be

established relative to the £n-coordinates. The following forces act on the rocket:

T (t) - the thrust force with misalignment parameters €, and & |,

—;-n- € 92 sin(Qt+ }‘2) - shaking force due to mass unbalance in

SOSR, rocket,
Ixy 92 sin(Q t+A 1 ) - shaking moment due to mass unbalance in
SOSR rocket,

Q, P - front and rear shoe loads,

# 1Ql , u |P] - friction forces at the shoes.

All of the quarntities € 1 € 6, Ixy are assumed to be small so that we may
neglect products of these with 6 , § , or €.

For the motion of the mass center of the missile we have

w LM X3
—E‘l‘- [F,m-('qo+h)9] =T-W_siny "

-w [Pl -ulQf -Pef (e -a)-Qef ¢ +b),
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7.
man-Fn:
w (1] . . » v
_g_rn [9 €m+2§m9+ef(§m-a)+a¢]=p+Q
- we[lp] £yt RI£E tB] -W_cosy
W

+— ¢ sm(ten ) +T(8+9). (2

The angular motion of the rocket is expressed in the following relation
lm(9 + ¢)=Qb-thf'(§m+b) -u |Q h-p Q| ef (gm +b) b
-Pa-Pef' (¢ _-a)h-u |P| h+u|P| et €,-2a-Tey-To(a+d)

2 .
+Ix Q 81n(9t+x.1). (3)

y

These equations contain the unknowns 6 , gm, P, Q. One final equation is
sufficient for a unique determination of these variables. The moment of momentum

principle with respect to the point O for the entire system will give one such

equation:

e ° . w : -
It {IL 0 +Im( e+ y) - —g-“-‘ [ gm (no+h+ef(gm-a)+azp]-(no+h)ze]
w . .
+?r_n__ [egmf’(g’m-a)ﬂl"’+ 5] gm}

=W cos‘y(g‘m-gmo)- T(n, +h+€2)+T6(§m-a-d) - Tef(gm)
w

(49
+—2 ¢ 92 sin(Qt+Aa, )€ +1 nzsin(9t+7\)-ﬁe+T¢p§
g 1 17°m " “xy 2 m’



8.

Although two more independent equations exist for the launcher, we shall not
be concerned with them here since they only serve to define the unknown forces
acting at the pivot point O.

For the model considered we shall employ Eqs. (1), (2), (3) and (4) to

justify the approximations which will be presented in the next chapter.
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II. APPROXIMATE ANALYSES

The inaccuracies.described in Chapter I enter into theanalytical description
of the system through non-zero values of the parameters €, € 1’ € 6, Ixy’ TR
We disregard coupling effects and examine the consequences of taking these
quantities to be non-zero one at a time.

Idealized Case (all parameters zero)
L

As our first problem, let us consider approximating the response of the
ideal system: the one in which all of the inaccuracy parameters are zero. In

this case Eqs. (1) and (4) become

W ,

L [E -t +0) 8] =T-W_ siny=T ()T, (5)
d [é(I I Vm (2 )] +Be=-¢_ -t W 6
dt L™ "m* 3 m BO=-Cp b Wpmosy (6

We have neglected first order changes in moment arms for wm and also assumed

that B is very large. Neglecting the effects of © in Eq. (5) we have

T g t
Em = ﬁ’-;n— ‘g(t-‘r)Te('r)d‘r +€ o

and so Eq. (6) becomes

. w T 8 t
Hd_t'[e(1+1_'gm grle)]+“’29=' ? cos y _L(t'T)Te(T)d7 (7)

where I =1; +I1  and W = B/1 . Integrating this equation with respect to t,
there results
t

. Wm 2 T gcosy
e(1+-r—g— gm)+w j;e('r)d'r— -—T—— (t 1') T (ndr (9
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We have used the fact that (0) = 0. This equation is essentially an impulse-
; momentum relation involving angular quantities. The first term is a change in
angular momentum reduced by a factor I, and the remaining terms are angular
impulses reduced by the same quantity. These impulses represent the effects of
the spring B and the thrust. In order to estimate 8 at tip-off, it is necessary
to know the dependence of © on time up to tip-off.

Previous numerical studies along with field measurements indicate

that most realistic systems have a 6-time history as shown in Fig. (5).

tip-off

FIGURE 5

Since according to Eq. (7) and the initial conditions the second and third
derivatives of © vanish at t = 0, we shall sssume that
6 ¢4
0 = 'P_'S' (9)

4t
P




. 11,

P where ép is the pitch velocity at tip-off time tp . Placing Eq. (9) in Eq. (8)

and performing the obvious reductions we find that

TogCOS'y t 2
. - e e (tp-'r) Te('r)d-r (10)
) 4 .
P w (wt_)

m .2 g
1+—§--I—§m(tp) + -_,%_

For systems with large launch time Te (7) may be replaced by unity and in this

case Eq. (10) simplifies to

Togcos-y 3
. - t
8 = 6 1 P = . (11)
p w 2 (wt)

I'F'EI’[E' tm () + —?.'GP

A comparison of this formula with known results indicates that it is fairly
accurate when the time of launch tp is one-half or less than the natural period

of the system; that is,

1. _ 1
ts'Z'T"Z .

The reason for this can be obtained by converting Eq. (8),which we write more

generally as
t

éA(t)+w2f9dT=F(t) , (12)
0

into an integral equation for ® and then solving this .equation by iteration.

in Eq. (12
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and F (t) is any forcing function. (As we shall see later most of the inaccuracies
present themselves as different forcing functions.)

By noting that

t t
fe (r)dr = [(t-‘r) 0 (1) dr (13)
0 0 °

if 6 (0) = 8 (0) = 0, we have immediately that Eq. (12) becomes
t
A(D) () +w? L(t-‘r) 8(r)dr = F (1) (14)

which is now an integral equation in 6 . If now we change variables according to

t t

t = y —9 A(®=B , F (t) =G (v), = a, 1
tu (2“) (9 = B(u) (—2? (v) 1% a (19
then we have
B (u) T ta j(u v) dv= G(). ' (16)

The solution of this equation can be expanded in a power series in a2 according

to
48 i 2 (17)
u du
n=0
where
dGO
B (u) i =G (u)
and
de u de
+
B (u) __32_:11___§=_ (uv)Tg-‘ldv.

In particular taking T e (1) = 1 we find
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4 4 u
3 .
8, (ws= - To B0 u ' (u) o80T fuw dv
0 61 A ’ 9 61 A(U) o B
so that
T cos t3 ! 3
d(t.) = - o8 Y l-a2 (1-v)vidv
p’ 61 A(t ; B (V)
_ p
40
+ Error Ofa 64) . (18)

When a is sufficiently small the first term in Eq. (18) gives é (tp ) fairly
accurately. Since

1

3 1
(1 -v)vidy
0 B (v) Z 20B(1)

\4

we can write

T gcos-yt3 2
0(t )= - —2 1- —2
P I t 20B (1)
o To g6c;)s'y tg 1 .
1 + o
A(‘p)[ 'mm)]
_Togcos'yts
- 2
w 2 (wt)

when a2/ 20 B (1) is small. But this expression is identical with Eq. (11).
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Numerical Solution of Eq. (16)

For those cases in which this two term approximation is not accurate
enough,additional iterations become prohibitive. The nature of Eq. (16) lends
itself readily to desk calculator computations if one converts it into finite
difference form. To do this we first break up the interval (0, 1) into n equal

subdivisions 1/n units long. If

R . . d8 - k
B =B(3). & =S| G = G()
u =k/n
then Eq. (16) becomes
k-1
o +(a/n?) Z (k-m)6&_ =G k=2...,n (19)
X n O
m=1
e'o =0 Bl 9'1 =Gl

This set of recursion relations is readily evaluated on a desk computer for e'n
which corresponds to the tip-off pitch velocity.

We shall now show how to reduce the effects of the various disturbing
agencles to an integral equation which can be readily solved either by iteration

or recourse to the numerical procedure of Eq. (19).

Thrust Misalignment

After ignition of the motor, the thrust may not act through the mass
center of the missile. Our interest is in evaluating the difference in pitch
velocity between the ideal system and the one in which thrust malalignment is
present. If Ap = BT - © where BT is the angular response of the structure

with thrust misalignment present, then
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_To(a+d) , T 08y
1 r

| | 'HQE[AT A(t)] + w2 Ap= . (20)

; Eq. (20) is the differential equation satisfied by the variation in pitch velocity

g . due to thrust misalignment. This is readily converted into an integral equation
; t T 6¢
A A +o? enA_(mdr=| [-T8axd) m g,
: T 0 T I I
(21)

When tp / Tn is small two iterations are sufficient for a solution and we find that

. . T 6 T g 3
Ap(ey) A(r) = 01 [_G‘EW- t +(§mo-a-d)tp]

m
2 5 (22
-w T06 yTog t +(§mo'a’d) ts]
Kltpf EWm! %— 61 p

for the case of constant thrust,
For those cases in which this two term approximation is not valid a solution

of Eq. (21) based on the process of Eq. (19) is in order.

Shaking Forces

When the missile spins on the rail the equation for the deviation in pitch

velocity A = Os - 0 is of the form

d [A . ] 2 _ Ixz 92 ;
IrlAM A, O+ WA = =5 sin(Q t+A )

wm

+-8-T—elnzgmsin(9 t+7\2) (23

where A 1’ A2 are random angles between 0 and 2w . This is again reduced to




i - . 16.
an integral equation in A g’
t
AMA+ w? f(t-‘r) Agdr = A_(0)
i 0
(24)
w 2

+——’-‘%—— [cos A -cos(@t+ Al)]+ T—gln— elnjﬁ (1) sin (@ T +A)d7

0

Jut
el

The solution of this equation by iteration yields very unwieldy expressions. Further-

more because of the random character of As (0), A 1’ >‘2 As in itself is in-
determinate. It is more appropriate to speak of the mean value of A g’ X s ,and
its standard deviation o [A s] . These can be obtained by first noting that

Eq. (24) can be written in the form

t
A(Y) As + w? jo(t-'r) As dr = As (0) L (1) + L, (sinr +L,(t) cos A

+L3(t) sin A +L4(t) cos A

2 2

where L/ (t) = 1. Writing

As(t') ;As(o)Aso(t)+ Ag (9sinn; +A_, () cosr, +Ass(t) sin A

2
+ As4 (t) cos A, (25)
we find that
. t
AWA,®+ l:(w) A g dr = Li() (26)

Each of these can be solved for A st (t o ) by the process outlined in Eq. (19).
Consequently the mean value and standard deviation of A s (t o ) due to the

initial value A 5 (0) is




[As (tp )] initial value
(8 6)]

and for the parameter A 1
[3: ¢, )] A, =0

and for the parameter 7\2

|As(tp)] =0,

Ay

initial value

"[As(tp)] x. -

A Ay ()

80P

o [A,0] B,,0)

A2, (tp)+A§2(tp)

1

22 2 2
At )+AT, (L)
: - 83'p s4°p
O'[As(tp )] }‘2 J Vi

Consequently the expected mean value of A s (t D ) is

hete) = [ 0] A ()

and the standard deviation is

17,

A(t )] ‘\/ [A (0) A2 (t) +3 [

In computing these we have assumed that A 1 }‘2’ A s (O are independent.

Friction

In treating iriction we assume that gm is given by the expression

and write

d 2
IT éfA(t)+w 0, =-p

t
‘I;(t-‘r) Te (1) dr +gmo

INI wm

Myt -6 -€ ) -—— cosy

mo

(t)+A ot )+A23(t )+As4(t )].

(27)
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where N is taken as
wm " é
N=Wmcosy+—§-(§mef+96m f)'

So long as N > 0 we may write

' W_ (n_+h) (n+h W_ 1,
o 8 [A(t)w = = em]ﬂw (t-1) +p—7 —giem] 8 (r) d7
’ 0

N

g 1

=_Togcos-y ts-ip.('q +h) W__ cosy t (28
61 I 0 m Y ot

An approximate expression for éf follows by iteration. When this is done

there resuits -1
\ ) W, .2 pW_ (n +h
ef (tp ) - - [‘l +'g—l'— gm (tp ) + g I gm (tp )]

|T,gcosy 3 rn +h
—T tp + —1 Wm cos y tp

T gcosy t5 4p(qn_+h
-2 Wy —2 7
61 I o

p(n, + h)

—_— WmCOS‘y—tg [

2u(n°+h)
T
I o

w + 1
A more accurate solution can be obtained by writing Eq. (28) as

t
C (1) éf + fD(t,‘r) éf(‘r)d‘r= E (t) (29)
0

and solving Eq. (29) numerically. By converting to the variable t= tp u  we

have
u

L () e'f(u)+fM(u, Y g% dv =N (u
0

Splitting the range (0, 1) into n equal subintervals there results

o
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Bix

m 1

=18
#
z

=18

k-1
[L(§ )+M( £, %)] o' (£)+ le
ms=

L N(l/n)
o' (0)=0 ’ e (")'3
f 000D +M(5. 1)

Rail Curvature

As a final item we consider rail curvature. In this case all we present
is an integral equation. Any solution of this equation hinges on an assumed form

for rail curvature. If AR denotes the difference GR - 8 where BR is the

angular response in the presence of rail curvature Eq. (4) reduces to

w . . .
a-‘%- A(v) AR +w2AR = i_g@_. Ed—t' [e gmf(ﬁm-a)+ ay gm-egmgmf'(gm~a)
. Wm cos ¥y
-a lﬁgm - TGTB;— € [b f'(gm-a) + af'(gm +b)]
- X v Te_ v (30

It is worth noticing that rail curvature introduces a thrust misalignment in a
sense. The appropriate integral equation is

t
W

A@Ap+ wzl(t-r) Agdr = T@"‘L[ ef fE€ -a)-ef £ £ <a)
, tagg -a aﬁ&m]
L W_cos vy
-rf —FF— € [b f' (gm-a)+ af (§m+ b)] +Tef(§m)-T§m¢ drt.
0

This is. again of the form which Eq. (19) solves numerically.
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